Search Data.gov
Found 95 dataset(s) matching "Long Bay Observation System".
-
This dataset contains imagery, GPS coordinates, elevation data, and sediment characteristics collected from a restored marsh island in Chesapeake Bay; Swan Island. The data were collected for the...
-
The Chesapeake Bay Estuary is the largest estuary in the United States and provides habitats for diverse wildlife and aquatic species, protects communities against flooding, reduces pollution to...
-
We will have combined airborne and field sampling at PACE overpass time over two sampling periods October 2024 and May 2025, spanning a wide range of aerosol and ocean states for Monterey Bay,...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...