Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

The Metal Coordination of sCD39 during ATP Hydrolysis

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 06, 2025 | Last Modified: 2025-09-06
Background The hydrolysis of ATP and ADP by ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) requires divalent cations, like Ca2+ and Mg2+. In spite of considerable work, it is not clear whether divalent cations bind to the enzyme in the absence of nucleotide or only as nucleotide-Me+2 complex. Here we study the protein ligands for Me+2. Results When VO2+ was used as a substitute for Ca2+, the ATPase activity of soluble CD39 was 25% of that with Ca2+ as cofactor. Protein ligands of the VO2+-nucleotide complex bound to the catalytic site of soluble CD39 were characterized by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectrum contained one species designated T with VO2+-AMPPNP as ligand. Two species D1 and D2 were observed when VO2+-AMPCP was bound to soluble CD39. The results suggest that species D1 and D2 represent the metal-ADP complexes at the catalytic site of soluble CD39 corresponding to the intermediate formed during ATP hydrolysis and the substrate for further hydrolysis, respectively. Conclusions VO2+ can functionally substitute for Ca2+ as a cofactor of sCD39, and it produces four different EPR features when bound in the presence of different nucleotides or in the absence of nucleotide. The metal coordination for each conformation corresponding to each EPR species is proposed, and the mechanism of sCD39 catalysis is discussed.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov