Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

SPATIALLY ADAPTIVE SEMI-SUPERVISED LEARNING WITH GAUSSIAN PROCESSES FOR HYPERSPECTRAL DATA ANALYSIS

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: June 28, 2025 | Last Modified: 2025-03-31
SPATIALLY ADAPTIVE SEMI-SUPERVISED LEARNING WITH GAUSSIAN PROCESSES FOR HYPERSPECTRAL DATA ANALYSIS GOO JUN * AND JOYDEEP GHOSH* Abstract. A semi-supervised learning algorithm for the classification of hyperspectral data, Gaussian process expectation maximization (GP-EM), is proposed. Model parameters for each land cover class is first estimated by a supervised algorithm using Gaussian process regressions to find spatially adaptive parameters, and the estimated parameters are then used to initialize a spatially adaptive mixture-of-Gaussians model. The mixture model is updated by expectationmaximization iterations using the unlabeled data, and the spatially adaptive parameters for unlabeled instances are obtained by Gaussian process regressions with soft assignments. Two sets of hyperspectral data taken from the Botswana area by the NASA EO-1 satellite are used for experiments. Empirical evaluations show that the proposed framework performs significantly better than baseline algorithms that do not use spatial information, and the results are also better than any previously reported results by other algorithms on the same data.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov