Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Organ culture: a new model for vascular endothelium dysfunction

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 06, 2025 | Last Modified: 2025-09-06
Background Endothelium dysfunction is believed to play a role in the development of cardiovascular disease. The aim of the present study was to evaluate the suitability of organ culture as a model for endothelium dysfunction. Methods The isometric tension was recorded in isolated segments of the rat mesenteric artery branch, before and after organ culture for 20 h. Vasodilatation was expressed as % of preconstriction with U46619. The acetylcholine (ACh) induced nitric oxide (NO) mediated dilatation was studied in the presence of 10 μM indomethacin, 50 nM charybdotoxin and 1 μM apamin. Endothelium-derived hyperpolarising factor (EDHF) was studied in the presence of 0.1 mM L-NOARG and indomethacin. Prostaglandins were studied in the presence of L-NOARG, charybdotoxin and apamin. Results The ACh-induced NO and prostaglandin-mediated dilatations decreased significantly during organ culture (NO: 84% in control and 36% in cultured; prostaglandins: 48% in control and 16% in cultured). Notably, the total ACh-dilatation was not changed. This might be explained by the finding that EDHF alone stimulated a full dilatation even after organ culture (83% in control and 80% in cultured). EDHF may thereby compensate for the loss in NO and prostaglandin-mediated dilatation. Dilatations induced by forskolin or sodium nitroprusside did not change after organ culture, indicating intact smooth muscle cell function. Conclusions Organ culture induces a loss in NO and prostaglandin-mediated dilatation, which is compensated for by EDHF. This shift in mediator profile resembles that in endothelium dysfunction. Organ culture provides an easily accessible model where the molecular changes that take place, when endothelium dysfunction is developed, can be examined over time.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov