Return to search results
💡 Advanced Search Tip
Search by organization or tag to find related datasets
Intergenerational responses of wheat to CeO2 nanoparticles, growth and nutrient contents
The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs/kg soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, isotopic, and synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) data were collected on second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). Plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). In addition, synchrotron XRF elemental chemistry maps of soil/plant thin-sections revealed limited transformation of CeO2-NPs with no evidence of plant uptake or accumulation. The findings demonstrated that first generation exposure of wheat to CeO2-NPs affects the physiology and nutrient profile of the second generation plants. However, the lack of concentration-dependent responses indicate that complex physiological processes are involved which alter uptake and metabolism of CeO2-NPs in wheat.
This dataset is associated with the following publication:
Rico, C., M. Johnson, M. Marcus, and C. Andersen. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environmental Science: Nano. RSC Publishing, Cambridge, UK, 4: 700-711, (2017).
Complete Metadata
| bureauCode |
[ "020:00" ] |
|---|---|
| identifier | https://doi.org/10.23719/1502592 |
| programCode |
[ "020:095" ] |
| references |
[ "https://doi.org/10.1039/c7en00057j" ] |
| rights | null |