Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 06, 2025 | Last Modified: 2025-09-06
Background Proteins HMG1 and HMG2 are two of the most abundant non histone proteins in the nucleus of mammalian cells, and contain a domain of homology with many proteins implicated in the control of development, such as the sex-determination factor Sry and the Sox family of proteins. In vitro studies of interactions of HMG1/2 with DNA have shown that these proteins can bind to many unusual DNA structures, in particular to four-way junctions, with binding affinities of 107 to 109 M-1. Results Here we show that HMG1 and HMG2 bind with a much higher affinity, at least 4 orders of magnitude higher, to a new structure, Form X, which consists of a DNA loop closed at its base by a semicatenated DNA junction, forming a DNA hemicatenane. The binding constant of HMG1 to Form X is higher than 5 × 1012 M-1, and the half-life of the complex is longer than one hour in vitro. Conclusions Of all DNA structures described so far with which HMG1 and HMG2 interact, we have found that Form X, a DNA loop with a semicatenated DNA junction at its base, is the structure with the highest affinity by more than 4 orders of magnitude. This suggests that, if similar structures exist in the cell nucleus, one of the functions of these proteins might be linked to the remarkable property of DNA hemicatenanes to associate two distant regions of the genome in a stable but reversible manner.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov