Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Fish Detection AI, Optic and Sonar-trained Object Detection Models

Published by Water Power Technology Office | Department of Energy | Metadata Last Checked: June 28, 2025 | Last Modified: 2025-05-21T15:42:18Z
The Fish Detection AI project aims to improve the efficiency of fish monitoring around marine energy facilities to comply with regulatory requirements. Despite advancements in computer vision, there is limited focus on sonar images, identifying small fish with unlabeled data, and methods for underwater fish monitoring for marine energy. A YOLO (You Only Look Once) computer vision model was developed using the Eyesea dataset (optical) and sonar images from Alaska Fish and Games to identify fish in underwater environments. Supervised methods were used within YOLO to detect fish based on training using labeled data of fish. These trained models were then applied to different unseen datasets, aiming to reduce the need for labeling datasets and training new models for various locations. Additionally, hyper-image analysis and various image preprocessing methods were explored to enhance fish detection. In this research we achieved: 1. Enhanced YOLO Performance, as compared to a published article (Xu, Matzner 2018) using earlier yolo versions for fish object identification. Specifically, we achieved a best mean Average Precision (mAP) of 0.68 on the Eyesea optical dataset using YOLO v8 (medium-sized model), surpassing previous YOLO v3 benchmarks from that previous article publication. We further demonstrated up to 0.65 mAP on unseen sonar domains by leveraging a hyper-image approach (stacking consecutive frames), showing promising cross-domain adaptability. This submission of data includes: - The actual best-performing trained YOLO model neural network weights, which can be applied to do object detection (PyTorch files, .pt). These are found in the Yolo_models_downloaded zip file - Documentation file to explain the upload and the goals of each of the experiments 1-5, as detailed in the word document (named "Yolo_Object_Detection_How_To_Document.docx") - Coding files, namely 5 sub-folders of python, shell, and yaml files that were used to run the experiments 1-5, as well as a separate folder for yolo models. Each of these is found in their own zip file, named after each experiment - Sample data structures (sample1 and sample2, each with their own zip file) to show how the raw data should be structured after running our provided code on the raw downloaded data - link to the article that we were replicating (Xu, Matzner 2018) - link to the Yolo documentation site from the original creators of that model (ultralytics) - link to the downloadable EyeSea data set from PNNL (instructions on how to download and format the data in the right way to be able to replicate these experiments is found in the How To word document)

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov