Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 06, 2025 | Last Modified: 2025-09-06
Background Affymetrix oligonucleotide arrays simultaneously measure the abundances of thousands of mRNAs in biological samples. Comparability of array results is necessary for the creation of large-scale gene expression databases. The standard strategy for normalizing oligonucleotide array readouts has practical drawbacks. We describe alternative normalization procedures for oligonucleotide arrays based on a common pool of known biotin-labeled cRNAs spiked into each hybridization. Results We first explore the conditions for validity of the 'constant mean assumption', the key assumption underlying current normalization methods. We introduce 'frequency normalization', a 'spike-in'-based normalization method which estimates array sensitivity, reduces background noise and allows comparison between array designs. This approach does not rely on the constant mean assumption and so can be effective in conditions where standard procedures fail. We also define 'scaled frequency', a hybrid normalization method relying on both spiked transcripts and the constant mean assumption while maintaining all other advantages of frequency normalization. We compare these two procedures to a standard global normalization method using experimental data. We also use simulated data to estimate accuracy and investigate the effects of noise. We find that scaled frequency is as reproducible and accurate as global normalization while offering several practical advantages. Conclusions Scaled frequency quantitation is a convenient, reproducible technique that performs as well as global normalization on serial experiments with the same array design, while offering several additional features. Specifically, the scaled-frequency method enables the comparison of expression measurements across different array designs, yields estimates of absolute message abundance in cRNA and determines the sensitivity of individual arrays.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov