Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Data release for "Shear Failure of a Granite Pin Traversing a Sawcut Fault"

Published by U.S. Geological Survey | Department of the Interior | Metadata Last Checked: July 18, 2025 | Last Modified: 20200818
Fault heterogeneities such as bumps, bends, and stepovers are commonly observed on natural faults but challenging to recreate under controlled laboratory conditions. We study deformation and microseismicity of a 76 mm-diameter Westerly granite cylinder with a sawcut fault with known frictional properties. An idealized asperity is added by emplacing a precision-ground 21 mm-diameter solid granite dowel that crosses the center of the fault at right angles. This intact granite ‘pin’ provides a strength contrast that resists fault slip. Upon loading to 80 MPa in a triaxial machine, we first observed a M -4 slip event that ruptured the sawcut fault, slipped 40 um, but was halted by the granite pin. With continued loading, the pin failed in a swarm of thousands of M -6 to M -8 events known as acoustic emissions (AEs). Once the pin was fractured to a critical point, it permitted complete rupture events (M -3) on the sawcut fault (stick-slip instabilities). Subsequent slip events were preceded by clusters of foreshock-like AEs, all located on the fault plane, and the spatial extent of the foreshock clusters is consistent with our estimate of a critical nucleation dimension h*. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that dilatancy of this gouge propped open the fault and prevented microseismic events in its vicinity. Recorded microseismicity separates into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. We found that pin fracture events were exclusively implosive (anticrack) even though the shear process zone was overall dilatant. This shows how aseismic effects can lead to unexpected seismic manifestations of certain faulting processes.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov