Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Data for "Targeted Chemical Pressure Yields Tunable Millimeter-Wave Dielectric "

Published by National Institute of Standards and Technology | National Institute of Standards and Technology | Metadata Last Checked: June 27, 2025 | Last Modified: 2019-11-20 00:00:00
Included here are figures and other relevant data from the paper "Targeted Chemical Pressure Yields Tunable Millimeter-Wave 5G Dielectric with Unparalleled Performance" published online in Nature Materials on 23 December 2019 (https://doi.org/10.1038/s41563-019-0564-4). Abstract: Epitaxial strain can unlock enhanced properties in oxide materials but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimeter-wave tunable dielectric, the epitaxially strained 50 nm thick n = 6 (SrTiO3)nSrO Ruddlesden-Popper grown on (110) DyScO3. The defect mitigating nature of (SrTiO3)nSrO results in unprecedented low loss at frequencies up to 125 GHz. No barium-containing Ruddlesden-Popper titanates are known, but this atomically-engineered superlattice material, (SrTiO3)n?m(BaTiO3)mSrO, enables low-loss, tunable dielectric properties to be achieved with lower epitaxial strain and a 200 % improvement in the figure of merit at commercially-relevant millimeter-wave frequencies. As tunable dielectrics are key constituents for emerging millimeter-wave high-frequency devices in telecommunications our findings could lead to higher performance adaptive and reconfigurable electronics at these frequencies.

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov