Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Characterizing Variability and Multi-Resolution Predictions

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: October 17, 2025 | Last Modified: 2025-04-01
In previous papers, we introduced the idea of a Virtual Sensor, which is a mathematical model trained to learn the potentially nonlinear relationships between spectra for a given image scene for the purpose of predicting values of a subset of those spectra when only partial measurements have been taken. Such models can be created for a variety of disciplines including the Earth and Space Sciences as well as engineering domains. These nonlinear relationships are induced by the physical characteristics of the image scene. In building a Virtual Sensor a key question that arises is that of characterizing the stability of the model as the underlying scene changes. For example, the spectral relationships could change for a given physical location, due to seasonal weather conditions. This paper, based on a talk given at the American Geophysical Union (2005), discusses the stability of predictions through time and also demonstrates the use of a Virtual Sensor in making multi-resolution predictions. In this scenario, a model is trained to learn the nonlinear relationships between spectra at a low resolution in order to predict the spectra at a high resolution.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov