Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

Activity modeling under uncertainty by trace of objects in smart homes

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: October 31, 2025 | Last Modified: 2025-07-17
A typical resident of a smart home can be an Alzheimer patient that forgets sometimes to complete the activities that he begins. The key point to assist the smart home resident is to model the activities and discover correct realization patterns of activities. To accomplish this task, we apply sensors to provide primary data about realization patterns of actions, operations, plans, goals and generally any objective that the smart home resident may desire to do. In the consequence, by applying fuzzy clustering techniques, we are able to mine sensor data to retrieve the realization patterns of activities, and so the prediction patterns of intentions are recognizable. Comparing the realization patterns with prediction patterns of activities, we would be able to predict the intention of the resident about the activity that the resident considers to realize. In this way, we would be able to provide hypotheses about the resident goals and his possible goal achievement’s defects. Spatiotemporal aspects of daily activities such as movement of objects are surveyed to discover the patterns of activities realized by the smart homes residents. In this research, uncertainty is considered as a property of activity recognition.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov