Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

A Data-Driven Approach to Complex Voxel Predictions in Grayscale Digital Light Processing Additive Manufacturing Using U-nets and Generative Adversarial Networks

Published by National Institute of Standards and Technology | National Institute of Standards and Technology | Metadata Last Checked: June 27, 2025 | Last Modified: 2023-03-07 00:00:00
Digital light processing (DLP) vat photopolymerization (VP) additive manufacturing (AM) uses patterned UV light to selectively cure a liquid photopolymer into a solid layer. Subsequent layers are printed on to preceding layers to eventually form a desired 3 dimensional (3D) part. This data set characterizes the 3D geometry of a single layer of voxels (volume pixels) printed with photomasks assigned random intensity levels at every pixel. The masks are computer generated, then printed onto a glass cover slide. Geometry of the printed voxels is characterized by laser scanning confocal microscopy. The data were originally curated to train image-to-image U-net machine learning models to predict voxel scale geometry given arbitrary photomasks, as described in the publication "A Data-Driven Approach to Complex Voxel Predictions in Grayscale Digital Light Processing Additive Manufacturing Using U-nets and Generative Adversarial Networks". Data are provided in a raw (native microscope format and photomask image) and processed into aligned mask-print training pairs. A total of 1500 8 pixel × 8 pixel (i.e. 96 000 pixel interactions) training pairs are provided. Jupyter notebooks for various steps in process are also provided.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov