Skip to main content
U.S. flag

An official website of the United States government

Return to search results
💡 Advanced Search Tip

Search by organization or tag to find related datasets

2D Segmentation of Concrete Samples for Training AI Models

Published by National Institute of Standards and Technology | National Institute of Standards and Technology | Metadata Last Checked: June 27, 2025 | Last Modified: 2019-11-18 00:00:00
This web-based validation system has been designed to perform visual validation of automated multi-class segmentation of concrete samples from scanning electron microscopy (SEM) images. The goal is to segment automatically SEM images into no-damage and damage sub-classes, where the damage sub-classes consist of paste damage, aggregate damage, and air voids. While the no-damage sub-classes are not included in the goal, they provide context for assigning damage sub-classes. The motivation behind this web validation system is to prepare a large number of pixel-level multi-class annotated microscopy images for training artificial intelligence (AI) based segmentation models (U-Net and SegNet models). While the purpose of the AI models is to predict accurately four damage labels, such as, paste damage, aggregate damage, air voids, and no-damage, our goal is to assert trust in such predictions (a) by using contextual labels and (b) by enabling visual validations of predicted damage labels.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov