Search Data.gov
Found 48 dataset(s) matching "tidal datum distribution".
-
This geospatial data set depicts the locations of National Ocean Service water-level stations to determine tidal datum distributions with the Seaside, Oregon, region.
-
This dataset contains four alternative digital elevation models (DEMs) at 1 m resolution and model performance statistical metrics for the Global Change Research Wetland (GCReW) site on the Rhode...
-
To support U.S. Army Corps of Engineers (USACE) storm surge modeling for the Louisiana Coastal Protection and Restoration Authority (CPRA), Lowermost Mississippi River Management Program (LMRMP),...
-
In recent years, rising sea levels have threatened critical infrastructure and cultural assets at Puʻuhonua o Hōnaunau National Historical Park thus motivating the park to make adaptive decisions...
-
In recent years, rising sea levels have threatened critical infrastructure and cultural assets at Puʻuhonua o Hōnaunau National Historical Park thus motivating the park to make adaptive decisions...
-
The U.S. Geological Survey (USGS) collected elevation and location data at 24 selected river reaches along the coast of Massachusetts in 2024. These data were collected in cooperation with the...
-
Fifty-one tidal marsh sites across five regions (sub-embayments) were surveyed in the Delta, Suisun Bay, San Pablo Bay, central San Francisco Bay, and South San Francisco Bay. Vegetation surveys...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...