Search Data.gov
Found 417 dataset(s) matching "Extreme Weather".
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Modeled wave time series from a downscaled wave data base (DWDB) are presented for the period 1979 to 2014, for locations from the U.S. Canada border to the southern boundary of Norton Sound along...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration...
-
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration...
-
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition...
-
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale)...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration...