Search Data.gov
Found 100 dataset(s) matching "ca cases".
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
This data provides river turbidity measurements collected on the Carmel River, CA. Turbidity was measured to study any changes in the Carmel River’s sediment loads following the removal of the San...
-
<p dir="ltr">Lower activity threshold study</p><p dir="ltr">To evaluate the lower activity threshold, <i>E. giganteana</i> larvae were collected starting in the first week of April to May 21st,...
-
<strong>UPDATE 1/7/2025: On June 28th 2023, the San Francisco Police Department (SFPD) changed its Stops Data Collection System (SDCS). As a result of this change, record identifiers have changed...