Search Data.gov
Found 7278 dataset(s) matching " Natural Resources".
-
Abstract The purpose of this sampling was to collect matched aquatic insect and water samples to support metals mixture toxicity modeling. This is part of a larger study that included exposing...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Coastal environments are expected to respond to rising sea levels through migration inland. This process is limited by the availability of corridors of sufficiently flat, undeveloped land to be...
-
This data release codifies and attributes explanatory factors that could potentially impact groundwater quality at 142 groundwater sites (wells or developed springs) used for domestic water supply...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition...
-
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...
-
A three-dimensional groundwater flow model was developed to characterize groundwater resources of the uppermost principal aquifers in the Williston structural basin in parts of Montana, North...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
This digital dataset contains historical geochemical and other information for 580 samples of groundwater from 12 wells located within the Placerita and Newhall Oil Fields in Los Angeles County,...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...