Search Data.gov
Found 1255 dataset(s) matching "Weather / Climate".
-
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale)...
-
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale)...
-
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale)...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition...
-
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition...
-
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition...
-
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition...
-
<p>The USDA-ARS Pasture Systems and Watershed Management Research Unit established a meteorological station in 2015 as part of the Upper Chesapeake Bay (UCB) site in the Long-Term Agroecosystem...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale)...
-
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale)...
-
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions...
-
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm...