Search Data.gov
Found 1565 dataset(s) matching "Tidal".
-
This dataset provides maps of biomass carbon (C) in gC/m2 of coastal herbaceous wetlands at a resolution of 30 m across the conterminous United States (CONUS) for 2015.
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of Reedsport. In cooperation with...
-
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species....
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species....
-
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species....
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Core names are in the format: SitecodeYear-Core#, i.e. TJE12-01 is Tijuana, 2012, 1st core. cm are the lower depth interval of the cm from which sample was taken, i.e. a sample from 50 cm would be...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...
-
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species....
-
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama...